THE URINARY SYSTEM

What type of waste does the kidney eliminate and how does it use osmosis to do it?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Functions of the Urinary System

- Elimination of waste products
 - Nitrogenous wastes
 - Toxins
 - Drugs

- Regulate aspects of homeostasis
 - Water balance
 - Electrolytes
 - pH balance
 - Blood pressure
 - RBC production
 - Activation of vit.D

Basic Gross Anatomy

Two kidneys

Two ureters

Urinary bladder

Urethra

Copyright © 2010 Pearson Education, Inc.

External Anatomy of the Kidneys

- Within the muscular wall of the back between T12-L3.
- Connective tissue layers:
 - Renal capsule
 - Adipose capsule
 - Renal fascia

Copyright © 2010 Pearson Education, Inc.

Internal Anatomy of the Kidneys

- Renal Cortex
- Renal Medulla
 - Renal pyramids
 - Renal papillae
 - Renal columns
- Renal Pelvis
 - With major calyces and minor calyces

Copyright @ 2010 Pearson Education, Inc.

Nephron Anatomy

Renal Corpuscie

- Glomerulus
- Bowman's capsule

Renal Tubules

- Proximal convoluted tubule (PCT)
- Loop of Henle
- Distal convoluted tubule (DCT)

- Attached to arterioles on both sides (maintains high pressure)
 - Large afferent arteriole
 - Narrow efferent arteriole
- The glomerulus sits within a glomerular capsule (the first part of the renal tubule)

Filtration Membrane

Filtration slits

Renal Physiology

Copyright @ 2010 Pearson Education, Inc.

Some drugs are secreted

(primary or secondary) Passive transport

Copyright @ 2010 Pearson Education, Inc.

Tubular Reabsorption at the PCT

- Glucose, lactate, amino acids and vitamins
 100%
- Bicarbonate ions (HCO₃⁻)- 90%
- Water and sodium ions 65%
- Potassium ions 55%
- Chloride ions 50%

(c) Ascending limb of loop of Henle

- Impermeable to H₂O
- Permeable to NaCl
- Filtrate becomes increasingly dilute as salt is reabsorbed

Copyright © 2010 Pearson Education, Inc.

Countercurrent Mechanism

Tubular Reabsorption at the Loop

- Chloride 35%
- Potassium 30%
- Sodium ions 25%
- Water 10%

(d) Distal convoluted tubule

- Na⁺ reabsorption regulated by aldosterone
- Ca²⁺ reabsortion regulated by parathyroid hormone (PTH)
- CI⁻ cotransported with Na⁺

Tubular Reabsorption at the DCT

- Water 25%
- Chloride 10%
- Sodium ions 10%

(e) Collecting duct

- H₂O reabsorption through aquaporins regulated by ADH
- Na⁺ reabsorption and K⁺ secretion regulated by aldosterone
- H⁺ and HCO₃⁻ reabsorption or secretion to maintain blood pH (see Chapter 26)
- Urea reabsorption increased by ADH

Tubular Secretion

Urine Formation

Urine composition

- 90-95% water
- Solutes constitute the other 5%
 - Metabolic wastes (urea, uric acid, and creatinine)
 - Ions (Na⁺, K⁺, PO₄³⁻, SO₄²⁻, Ca²⁺, Mg²⁺)
 - Toxins and pigments (urochrome)
 - Hormones

Urine characteristics

- Yellow in color
- Slightly aromatic or ammonia odor
- pH slightly acidic (can vary from 4.5 to 8.0)
- Specific gravity 1.001 to 1.035