URINE FILTRATION

EQ: How do you keep what you need but get rid of your waste?

- I. Non-Selective Filtration
 - a. Glomerular (blood) hydrostatic pressure (HPg = 55 mm Hg)
 - b. Blood colloid osmotic pressure (OPg = 30 mm Hg)
 - c. Capsular hydrostatic pressure (HP_c = 15 mm Hg)
 - d. Filtration Membrane

- II. Tubular Reabsorption
 - a. Proximal convoluted tubule
 - i. 65% of filtrate volume reabsorbed
 - ii. Na⁺, glucose, amino acids, and other nutrients actively transported; H₂O and many ions follow passively
 - iii. H^+ and NH_4^+ secretion and HCO_3^- reabsorption to maintain blood pH
 - iv. Some drugs are secreted
 - v. Tubular Reabsorption at the PCT
 - 1. Glucose, lactate, amino acids and vitamins 100%
 - 2. Bicarbonate ions (HCO₃⁻)-90%
 - 3. Water and sodium ions 65%
 - 4. Potassium ions 55%
 - 5. Chloride ions 50%
 - b. Descending limb of loop of Henle
 - i. Freely permeable to H₂O
 - ii. Not permeable to NaCl
 - iii. Filtrate becomes increasingly concentrated as H₂O leaves by osmosis
 - c. Ascending limp of loop of Henle
 - i. Impermeable to H₂O
 - ii. Permeable to NaCl

- iii. Filtrate becomes increasingly dilute as salt is reabsorbed
- iv. Countercurrent Mechanism
- v. Tubular Reabsorption at the Loop
 - 1. Chloride 35%
 - 2. Potassium 30%
 - 3. Sodium ions 25%
 - 4. Water 10%
- d. Distal convoluted tubule
 - i. Na⁺ reabsorption regulated by aldosterone
 - ii. Ca²⁺ reabsorption regulated by parathyroid hormone (PTH)
 - iii. Cl⁻ cotransported with Na⁺
 - iv. Tubular Reabsorption at the DCT
 - 1. Water 25%
 - 2. Chloride 10%
 - 3. Sodium ions 10%
- e. Collecting duct
 - i. H₂O reabsorption through aquaporins regulated by ADH
 - ii. Na⁺ reabsorption and K+ secretion regulated by aldosterone
 - iii. H^+ and HCO_3^- reabsorption or secretion to maintain blood pH
 - iv. Urea reabsorption increased by ADH
- III. Tubular Secretion

- IV. Urine Formation
 - a. Urine composition
 - i. 90-95% water
 - ii. Solutes constitute the other 5%
 - 1. Metabolic wastes (urea, uric acid, and creatinine)
 - 2. Ions (Na⁺, K⁺, PO₄³⁻, SO₄²⁻, Ca²⁺, Mg²⁺)
 - 3. Toxins and pigments (urochrome)
 - 4. Hormones
 - b. Urine characteristics
 - i. Yellow in color
 - ii. Slightly aromatic or ammonia odor
 - iii. pH slightly acidic (can vary from 4.5 to 8.0)
 - iv. Specific gravity 1.001 to 1.035